in the field

Tag: algae

Tiny but Mighty – Why we owe our existence to algae

(This blog was originally written for the International Association of Antarctic Tour Operators Blog here).

As you plan your trip to Antarctica you dream of seeing the ice, the whiteness, the dramatic landscape, the penguins, whales, and seals. You pack your camera and imagine the wind biting your cheeks, wondering how it’ll feel to be in one of the most extreme environments on Earth. You’ll be amazed to see how these tiny penguins withstand such harsh winds, below freezing temperatures, and dark cold nights. You’ll feel giddy when you see a seal blubber along an ice flow or slip gracefully into the water. You’ll shout for joy when you see large baleen whales lunge feeding on a swarm of krill at the ocean’s surface. And you will be even more amazed, when you learn about, and see with your own eyes, what makes this whole ecosystem come alive.

But for that surprise, you will have needed to pack a microscope. And prior to your trip, you most likely will not be dreaming of this peculiar set of organisms that give life to a seemingly inhospitable place.

Within the crystal aquamarine waters of Antarctica lie tiny little organisms you cannot see with the naked eye. They are like plants – in that they use sunlight and carbon dioxide to make energy through photosynthesis – yet, they’re not plants. They are also not bacteria, nor fungi, nor animal. They belong to a group of organisms called protists; mysterious otherworldly life that has had millions of years to evolve.

Biologists call these little solar panels adrift in the ocean ‘phytoplankton’, stemming from two Greek words phyton or ‘plant’ and planktos or ‘wanderer, drifter’. Each type of phytoplankton is only one single cell – just one. Humans are made up of trillions of cells. And each single phytoplankton cell, when growing in massive groups called blooms, collectively produce over 50 per cent of Earth’s oxygen; just as much, if not more, than the plants and trees on land combined.

They draw carbon dioxide out of the ocean and atmosphere and upon death sink to the sea floor below, cycling carbon around the globe. These microscopic life forms also make up the foundation of food for all marine life to survive—the life of those same large charismatic animals you’ve come to Antarctica to see – and the life living on the sea floor; they all depend on the presence of phytoplankton for their survival.

The Antarctic Peninsula is the fastest warming region in the Southern Hemisphere, with air and ocean temperatures increasing, causing sea ice and glaciers to melt at accelerated levels. When glaciers melt, this brings freshwater to the ocean and alters the physical and chemical nature of the marine environment. With warmer temperatures, the surface of the sea cannot freeze into a skin of sea ice, which provides a protective habitat for Antarctica’s dominant keystone animal, krill. Baleen whales, seals, and penguins eat krill, their breeding success depends on it, and krill depend on sea ice and phytoplankton to survive.

All the breeding cycles of Antarctic animals – from big to small — occur in synchrony and follow in succession with the spring phytoplankton blooms that come after winter’s end. These marine ecosystems have developed over millions of years and adapted to natural seasonal fluctuations and climate variability, but current rising temperatures of today, caused by human sources of carbon emissions, will test the limits of these systems beyond what their natural variations have predetermined. At what point will we tip the scale and yet again alter the Antarctic marine environment as we know it?

With this complex layered dance going on, it would be wise to pay attention to how phytoplankton – the krill food – changes during a season. Just like the harvest for produce changes during certain months of the year, not all phytoplankton types exist in the same months. Not much is known specifically about what happens to phytoplankton throughout an entire summer season because research funding and monitoring at this fine time scale has been limited, leaving Antarctica a relatively data-poor region of the world.

Tackling this challenge to learn more about a data-limited region, is exactly what motivates scientists like me to dedicate my career to solving these mysteries. With researchers in the Vernet Lab at Scripps Institution of Oceanography at UC San Diego, we are looking in to these patterns. Every season since 2016, the citizen science project FjordPhyto has partnered with multiple vessels that are members of the International Association of Antarctica Tour Operators (IAATO). Each time a ship explores a specific location along the Antarctic coast, travelers hop into a dedicated science boat to help collect samples for science.

With the assistance of trained guides, travelers concentrate phytoplankton using a net to strain out the seawater. They filter the sample onto a membrane and preserve it for analysis by us researchers back in the lab at Scripps Institution of Oceanography and University Nacional de la Plata in Argentina. We will look under high powered microscopes to identify species, and pair that information with analysis using genetic tools to look in more depth at their role in the ecosystem. 

These samples provide data to two PhD student’s dissertation theses: my own at Scripps Institution of Oceanography in San Diego California, USA, and Martina Mascioni at Universidad de la Plata in Argentina (SCAR and IAATO Fellowship recipient).

With many ships collecting multiple observations at many locations over time, we can start to look at changes in phytoplankton throughout the season and learn even more about the seasonal cycles of growth. After analyzing samples collected by citizen scientists from our first season of FjordPhyto, we published the project’s first scientific article, Phytoplankton composition and bloom formation in unexplored nearshore waters of the western Antarctic Peninsula , by Mascioni et al. (2019).  If we can link how the base of the food web – the phytoplankton communities – shift in relation to their changing environment, we might be able to predict how krill and the larger animals will respond.

After travelers collect samples with FjordPhyto, they bring it back on board for a viewing session under microscopes. That’s when the fascination and amazement begins in trying to imagine how these individual single cells, floating in front of your very eyes, live in a bigger community with many millions more cells, and can have a huge global impact on the environment. You may be familiar with phytoplankton in your daily life through experiencing the sight of bioluminescent waves crashing on a beach, through harmful algal blooms like red tide, that produce toxic compounds leading to shellfish poisoning and fish die offs. When the waters turn discolored or cloudy greenish brown this is typically a sign of abundant phytoplankton in the water.

Some algae are also being used for biofuel potential and as a superfood to enhanced health (for example, spirulina and cyanobacteria, a blue green algae). In this way, you have always been aware of their existence. But not until you see them up close, after collecting them from seawater yourself, does the experience and connection become so much more impressive.

Although phytoplankton are one of the simplest forms of life, there is a huge diversity among them. They come in all shapes and sizes and number in the hundreds of thousands of species. Many can be grouped into broader categories.

If you feel comfortable naming star constellations, various birds, or varieties of flowers, then naming a few of the phytoplankton groups shouldn’t scare you off too much. These larger groups include some that are covered in silica – a glass-like material – called diatoms, some use calcium carbonate like chalk, such as coccolithophores, and others are made of cellulose like wood, such as dinoflagellates. There are also the red algae, green algae, cyanobacteria, and small flagellates, just to name a few.

They have a crazy evolutionary history starting back 2.7 billion years ago – when the first solar powered single cell (cyanobacteria) first existed. These blue green algae were engulfed by another type of single cell, becoming one and giving rise to red algae and green algae. Green algae then gave rise to land plants 470 million years ago. And both green and red algae were engulfed again multiple times to give rise to variety of protists we see today.

Understanding these organisms at the genetic level can get complicated. Their genetic code ranges from small to massive, some have a genetic code that is 100 times larger than the humans! You have to wonder, what do they need all that DNA for?  If you like sci-fi, aliens, and space, its near impossible to not find phytoplankton mesmerizing, captivating the imagination.

So next time you’re looking out at the vast blue waters and wonder why a place is rich or devoid in life, the presence or absence of the big animals you know and love, think at the level of microscopic. Think about the dramas playing out in the world of tiny organisms fighting for survival. Everything else you can see with your naked eye, appreciate that it’s supported by the first level of life, the phytoplankton, Antarctica’s gold.

After your trip, you just might find yourself dreaming of learning more about these peculiar lives that give abundant life to one of the most extreme places on Earth. And next time you pack your bags, you just might leave room for a travel microscope.

About the author | Allison Cusick

Allison Cusick is a graduate student (PhD) studying polar biological oceanography in the Vernet Lab at Scripps Institution of Oceanography, California. Since 2017, she has been traveling annually to the Antarctic Peninsula through her graduate work running the Fjord Phyto citizen science project, collecting samples, and giving lectures to guests on-board various expedition ships.

FjordPhyto connects Antarctic visitors with scientists in the Vernet Lab to help monitor changes in the microscopic life that thrive within coastal areas throughout November to March. Together they are learning how melting glaciers impact biodiversity and ecology at the base of the food web, while also increasing visitor engagement and understanding of science.
Born and raised in Seattle, Washington Allison received her BS in Biology from the University of Washington in 2006, and her Masters in Marine Biodiversity & Conservation (at Scripps) in 2017. She spent the ten years in between working in various scientific fields before deciding to pursue a career as a polar oceanographer. Her first expedition to Antarctica was in 2013, where she boarded the US Nathaniel B Palmer as a research technician for 53-day expedition in the Ross Sea and that’s when the polar bug bit her. Her scientific expertise and love of travel have also allowed her to research exotic ecosystems in the Amazon jungle, the plains of Africa, and remote mountains in Mexico.

Feature image | Jack Pan; Other images | Allison Cusick

About IAATO

IAATO is a member organization founded in 1991 to advocate and promote the practice of safe and environmentally responsible private-sector travel to the Antarctic. IAATO Members work together to develop, adopt and implement operational standards that mitigate potential environmental impacts. These standards have proved to be successful including, but not limited to; Antarctic site-specific guidelines, site selection criteria, passenger to staff ratios, limiting numbers of passengers ashore, boot washing guidelines and the prevention of the transmission of alien organisms, wilderness etiquette, ship scheduling and vessel communication procedures, emergency medical evacuation procedures, emergency contingency plans, reporting procedures, marine wildlife watching guidelines, station visitation policies and much more. IAATO has a global network of over 100 members.

Share this:
Facebooktwitterby feather

When I Stopped Chasing The Dream Job, I Discovered My Dream Career

Re-posting an article I wrote for National Girls Collaborative Project, because I’ve added fun links in this version! You can read the original article published on National Girls Collaborative Project Blog  (submitted by Greta Carlson on April 29, 2016 – 2:20 pm)

Contributed by Allison Lee 

Growing up I never had a clear picture of what I wanted to become. Inspecting insects, creating mud-pies and gazing at the stars were childhood past times and as I grew into a teenager I embraced traveling and learning more about nature. I didn’t immediately connect all of these interests with becoming a scientist. My parents were not scientists. No one in my family had degrees beyond a high school diploma.  I remember wondering if I even needed to go to college. I spent  years frustrated by my lack of vision; finding the dream job I felt contained all of my passions was a struggle.

By the time I turned 30, I had traveled to all seven continents as a Biologist studying a diversity of lifeforms from microscopic algae, to songbirds, parrots, mice, squirrels, big cats, and whales. Obviously I figured something out! Life is funny that way. A hunch paired with the right blend of curiosity, odd jobs, research-focused vacations, volunteer opportunities, frugal living, and luck delivered me to my dream career.

Finding my passion
In my high school senior yearbook I wrote that I wanted to be an astronaut. I thought astronauts traveled the most of anyone on Earth. Inspired, I researched the degrees earned by NASA’s astronauts and found an overwhelming proportion had studied science. I decided to major in biology and geology at the University of Washington. It wasn’t until sophomore year when I had the epiphany that biology was my passion.

The scope of biology is broad and I wanted to learn as many disciplines as possible. Senior year, I signed up for an internship in neuroscience at the Allen Institute for Brain Science and found a part-time lab job in the Immunology Department taking care of a mouse colony. I started learning molecular techniques and computer programs, using fancy pieces of equipment, and doing those things called PCRs and Southern Blots. I wasn’t entirely sure what was going on – but I was doing SCIENCE!

6_lab

Questioning my interests
After I graduated with my Bachelor of Science in Biology, I continued to work full time in the immunology lab. Two and a half years passed. Restlessness set in and I began to wonder if maybe I just didn’t like science anymore. I knew one next possible move was to go to graduate school, like many of my college peers, but I didn’t know what I wanted to commit to studying. I wasn’t inspired by my neurobiology or immunology experiences. I hated doing computer work. I felt stuck. So I did the thing you’re never supposed to do: I quit.

The next two months were spent feverishly searching job boards, institute websites, and email listservs. Because of my interest in many aspects of biology, I didn’t know where to focus my efforts. Regardless, I felt optimistic that my Dream Job was out there. A job posting for a field technician conducting songbird research caught my eye. I didn’t know much about birds, but I convinced the interviewer I could learn bird songs because I learned other languages easily and had been playing music for 15 years. It worked! Every morning I woke at 4:00 AM to get to the field site before the sun rose. I got paid to be outside tromping through the woods looking for birds. It was during these quiet twilight mornings, outside in nature, that I realized THIS was my dream job. I never wanted it to end.

But, as is the nature of seasonal fieldwork, it did. Five months later, I found myself once again unemployed. Turns out, seasonal work is the usual for field technicians. I knew that field biology wouldn’t be the most lucrative career choice, but I felt empowered to commit myself to studying the environment – whether I got paid for it or not.

3_songbirds

The sacrifices
I went on a quest to find as many wildlife jobs as I could. Later that year, I studied forest fire treatments on threatened squirrel populations; I studied the breeding behaviors of endangered parrots in Mexico. Each time, the pay was minimal to none, so I worked side-gigs as a professional baker and bartender to pay my bills. While I was happy to gallivant around the woods for science, working for free wasn’t exactly the dream job I had in mind. I was turning into a poor disgruntled vagabond.

In an effort to gain a sustainable salary, I left fieldwork and went back into the lab to begin a project at the Institute for Systems Biology (ISB) investigating the genetic responses of algae to climate change and ocean acidification. I knew nothing about marine systems but I had skills in the lab and stellar references. Part of me thought leaving the field was a mistake but as I gained exposure to the natural world within a molecular science framework, I saw the impact of a systems approach to research and I was hooked. I still missed going out into nature every day, but I kept an open mind and a positive attitude.

Over six years have passed since I went back into the lab and the job has given me more opportunities than I could have imagined. What started off as a lab job performing controlled experiments on algae has evolved into a field job sampling algae from the natural environment. This work has led me all over the Puget Sound area of Washington, as well as to Hawaii, and even as far as Antarctica!

7_cytometerlab

The best of both worlds
As a field scientist working indoors, I still daydreamed about the rainforests. On the weekends, I’d flee to the mountains. With a bit of money saved up, I decided to satisfy my restless soul. I used my vacations to help conduct research on voluntourism projects, like Earthwatch. From aboard a restored rubber boom era steamship, I spent three weeks studying biodiversity in the Amazon jungle. I realized I could save my money, use my vacation time to get out in the field, and still have a paying job in science. It was the best of both worlds!

The plan is working. I’ve volunteered on projects studying macaws with Tambopata Research Center in Peru, biodiversity in the Amazon, big cats in Africa, and whales in Mexico. I love volunteering so much I do it at home too, giving time to local conservation organizations like Conservation Northwest. We work to mitigate human wildlife conflicts in the migration corridors of the Cascades. I also get kids outdoors with the Sierra Club, and spend time with kids through Ocean Inquiry Project, the Woodland Park Zoo, and Pacific Science Center. I speak about careers in environmental science with students to convey my passion for nature and inspire another generation to care about protecting the biodiversity on Earth.

12_planktontow

What’s in a dream?
I’ve come to believe the dream job doesn’t exist for me, and I don’t think it’s beneficial to maintain that perspective. I have too many passions – too much wonder for the potential of science in the world. I find fulfillment in contributing to important work for the environment and interacting with innovative collaborative thinkers. I benefit from an extremely flexible schedule, live in the city, and travel to amazing places through work. And I’ve been lucky to have many other amazing experiences volunteering with local and international conservation organizations. I am continually seeking as many opportunities as I can find, but this time things are different; I’m no longer looking for the Dream Job, I am creating the Dream Career.

1_profile

Allison Lee is a Seattle native who loves coffee, talking to people, and learning new things. When she’s not doing science you can catch her ultra-running, cycling, hiking in nature, traveling, and burning the candle at both ends. At age 32, she has finally realized the differences between working a job and building a career. This summer she will begin a Masters degree in Marine Biodiversity and Conservation at Scripps Institution of Oceanography in San Diego California with the hopes of following another curiosity: the social, economic and policy side of marine science. You can follow her and see examples of other inspirational women working in the field at Woman Scientist on Instagram, Facebook, and the Web.

**UPDATE** (April 2018): Allison graduated with her Master’s degree June 2017 and shortly after received funding from the National Science Foundation to support the Capstone project she created with Dr. Maria Vernet (watch the video here). Allison is now in the Biological Oceanography PhD program with Dr. Vernet at Scripps Institution of Oceanography leading the FjordPhyto citizen science project with tourists in Antarctica and the Arctic. She also works part time as a Senior Research Associate at Synthetic Genomics (Target CW) to advance breakthroughs in algal biofuel research. Share this:
Facebooktwitterby feather

© 2025 woman scientist

Theme by Anders NorenUp ↑